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SOLUTION OF A TWO-DIMENSIONAL CONJUGATE PROBLEM OF STABILIZED 

HEAT TRANSFER IN THE LAMINAR FLOW OF A LIQUID IN A CHANNEL 

Yu. N. Akkuratov and V. N. Mikhailov UDC 536.24.02 

A two-dimensional problem of conjugate heat exchange is solved by the method of 
integral boundary-value equations. Heat exchange in a body with cylindrical 
channels is studied. 

Theoretical investigations of convective heat exchange between a solid and a liquid 
are generally conducted by assigning third-order boundary conditions on the solid--liquid 
interface. These conditions include the heat-transfer coefficient a, determined a priori. 
Such a formulation of the problem does not consider the mutual thermal effect of the body 
and liquid, and heat exchange is independent of the properties of the body or its thermo- 
physical characteristics, dimensions, etc. Thus, it is necessary to examine a so-called 
conjugate problem, i.e., to simultaneously solve the equations of heat conduction in the 
body and liquid under the condition of equality of the temperatures and heat fluxes at the 
interface [i, 2]. 

One of the approaches to solving conjugate problems is based on the method of integral 
boundary-value equations [3]. 

Let the flat wall of the heat exchanger receive a heat flow of intensity q. The heat 
is removed by a liquid flowing in cylindrical channels of the same radius lying in a plane 
parallel to the wall. We will assume that the motion of the liquid is laminar and that the 
heat exchange between the liquid and solid is steady. 

Using these assumptions and symmetry conditions, let us formulate the problem of de- 
termining the temperature field in the following manner: 

In a two-dimensional region D (Fig. i), consisting of two subregions DI (solid) and D2 
(liquid), it is necessary to find the solution to the system of equations 

02Tt + 02T1 -0  (x, y)ED1, ( i )  
Ox 2 Oy z 

cpgW OT2 -- )~2 ( OZT~ OZT2 \ + ) (x, (2) 

with the following boundary conditions: 

On --q (x, y)CCD, T1 = T2, ~l OTIOn OTootz 

We have assigned 3T/3n = 0 on the rest of the boundary. Since only the heat flux is as- 
signed on the boundary, the temperature is determined to within a constant, chosen so that 
the temperature integral over the interface AB is equal to zero. 

On the section of thermal stabilization, the derivative 3T=/~z will be constant. From 

OT2 2qa 
the condition of heat balance, we find cp9 Oz ~RzW 

The velocity field for laminar flow in a channel of circular cross section is given by 
Poiseuille's formula [I]: 
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Fig. I. Region of solution of conjugate problem (rectangle OEDC is the 
region D~, while the hemisphere with the diameter AB is the region D2). 
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Fig. 2. Dependence of the number Nu on the angle ~ at the interface for 
different ratios of thermal conductivities. 

Fig. 3. Dependence of the Nusselt number Nu on the angle ~ at the inter- 
face for different channel radii. 

(r) 
_ = 2  1 - -  , r ~ = ( x - - c ) ~ + g ~ .  
W R 2 

Allowing for these relations, Eq. (2) for the temperature of the liquid takes the form 

%'z OZT2 __OZT2 = 4qa 1 - -  
Ox 2 + @2 ~R2 - ~  " (3) 

Thus, the conjugate heat-exchange problem being examined reduces to a type IV boundary- 
value problem for the Poisson equation in the two-dimensional composite region D. An algo- 
rithm was proposed in [4] for solving such problems based on the method of integral boundary- 
value equations. To use this approach, it is necessary to know the particular solution of 
Eq. (3). This is easily found in a polar coordinate system with its origin at the center of 

a circle U qa r 2 l ...... Thus, theproblem canbe solvedby themethod proposed in [4]. 
~2~ R 2 4R 2 

To f i n d  t h e  t e m p e r a t u r e  f i e l d  i n  t h e  r e g i o n  D, we w r o t e  a p r o g r a m  i n  FORTRAN f o r  t h e  EC 
computer. The calculations were performed for the following dimensions: b/a = !0.0, c/a = 
8.5, R/a = 0.5. 
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Figure 2 shows the change in the local Nusselt number: Nu = ~2 aT20n 2R/(T2--T) at the 
interface as a function of the polar angle ~ for different values of the ratio of thermal 
conductivities. It has been shown in works dealing with conjugate heat exchange that the 
usual condition of heat exchange between the body and liquid in the form of Newton's law 
becomes inapplicable for certain parameters of the problem in question. A similar conclu- 
sion follows from the results shown in Fig. 2. At high values of %~/%2, the Nusselt number 
is nearly constant along the boundary and approaches a value of 4.36. This corresponds to 
the solution with a constant heat flux on the surface of a round tube [6]. 

With a decrease in %~/%2 to values of the order of 1.0, the Nusselt number becomes var- 
iable along the interface, and a region with negative values of the heat-transfer coefficient 
appears, i.e., Newton's law ceases to describe the heat exchange process. 

Figure 3 shows curves depicting the dependence of the Nusselt number on the angle~ at 
~I/~2 = i0.0 for different values of the channel radius. An increase in the radius is accom- 
panied by an increase in the nonuniformity of heat transfer about the channel perimeter, 
i.e., the possibility of using third-order boundary conditions, other conditions being equal, 
also depends on the geometry of the heat exchanger. 

In conclusion, we should note that the method of integral boundary-value equations per- 
mits the solution of problems of stabilizedheat exchange in bodies consisting of parts with 
different thermal conductivities in the presence of certain circular channels of a different 
form with a known velocity field. 

NOTATION 

x, y, z, Cartesian coordinates; R, channel radius; %1, %2, thermal conductivities of 
the body and liquid; TI, T2, temperature of the body and liqu_id; Cp, heat capacity of th! 
liquid; p, density; W, velocity of liquid along the z axis; W, mean velocity of liquid; T, 
mean-balance temperature; q, heat flux; Nu, Nusselt number. 
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